Наука 19 20 века

Генетика, цитология, этология, теория относительности, социология, психоанализ и экология. Почему эти науки были объявлены в СССР «буржуазными лженауками»?
В конце 40-х и начале 50-х годов XX века в физике, биологии, математике, астрономии, химии возникли группы ученых, которые утверждали, что те или иные научные теории являются идеалистическими и должны быть исправлены или заменены материалистическими учениями.
В августе 1948 года состоялась знаменитая сессия ВАСХНИЛ (Всесоюзной академии сельскохозяйственных наук имени Ленина). Заседание, состав участников и докладчиков которого был тщательно подобран, признало единственно верным биологическое учение Трофима Денисовича Лысенко. В СССР начался погром генетики. Биологов выгоняли с работы, сажали в тюрьмы. Новое учение утверждало, что рожь может породить пшеницу, а елка — березу.


Трофим Денисович Лысенко после избрания его академиком Всеукраинской академии наук, 1934 год
Группы ученых-партийцев стремились сместить устоявшиеся теории, проверенные на многочисленных опытах. Так, в апреле 1951 года в Москве прошло Совещание по космогонии солнечной системы, на котором говорилось, что «кризис и разброд в зарубежной астрономии отражает противоречия загнивающего капиталистического общества». Зарубежные астрономические теории были отвергнуты как идеалистические.
Идеологическая цензура нанесла серьезный урон развитию наук в СССР
Физики-материалисты, как они себя называли, планировали в физических науках преобразования, которые по форме, сути, глубине и масштабам были бы аналогичны незадолго до того прошедшим преобразованиям в биологии.
Одним из основных объектов их критики была теория относительности Эйнштейна. Материалисты признавали, что эйнштейновская формула соотношения массы и энергии подтверждается на опыте и лежит в основе расчетов ядерных реакций, но, тем не менее, объявляли все учение ложным.
Другим объектом их критики были «воззрения копенгагенской школы» в физике микромира. Фактически отвергалась вся квантовая механика. Также подвергалась критике теория вероятности, в частности, понятие «математического ожидания».

Выступление Лысенко в Кремле. За ним (слева направо) Косиор, Микоян, Андреев и Сталин, 1935 год
Почему же запретили «буржуазные лженауки»?
Генетика
Забота партии о науке заключалась, прежде всего, в приведении научной картины мира в соответствие с идеологией диалектического материализма и коммунистическими лозунгами. Генетика же утверждала, что каждая личность уникальна и неповторима, и что многие не только физические, но и психические качества определены от рождения и лишь частично поддаются влияниям среды и внешней коррекции. Диалектический же материализм оценивал научную теорию не с точки зрения ее соответствия фактам, а с точки зрения господствующих философских догм и соответствия атеистическому мировоззрению.
Генетика вторглась в пределы идеологических сфер и шла в разрез с существующей картиной мира по Марксу и Ленину. Лысенко:»Генетика — продажная девка империализма».
Цитология
Цитология (наука о клетке) изучает, как построена живая клетка, и как она выполняет свои нормальные функции. В клетке находятся хромосомы, а хромосомы содержат гены. Гены изучает генетика, а генетика — «продажная девка империализма». Следовательно, цитология тоже должна быть под запретом. Вот такая вот логика.

Этология
Вплоть до середины 1960-х годов в СССР этология, в сущности, была под запретом и считалась «буржуазной лженаукой», а этология человека сохраняла этот статус вплоть до 1990-х годов. Почему? Потому что уж слишком явными становятся причины поведения лидеров. И эти причины не всегда оказываются моральными и гуманистическими…
Другим основанием, по которому Конрад Лоренц, основоположник этологии, и сама наука были под запретом, послужило участие ученого во Второй Мировой войне на стороне нацистов (в результате чего он даже побывал в русском плену). Хотя второй «отец» этологии, голландец Николаас Тинберген, участвовал в Сопротивлении и был заключен за это в нацистский концлагерь.

Николаас Тинберген (слева) и Конрад Лоренц, 1978 год
Теория относительности Эйнштейна
На деле теорию относительности не смогли запретить, потому что она была необходима для создания атомной бомбы. Ее использовали на практике, но на словах идеи Эйнштейна были объявлены «ложными». Получился так называемый «дуализм» в советской науке: теория считалась ошибочной, но активно применялась в жизни.
Взгляды Эйнштейна были «несостоятельны, антинаучны и враждебны науке».
Социология
Во времена СССР запрет на социологическую теорию проистекал из ее противостояния марксизму-ленинизму. Поскольку считалось, что это учение и есть советская социология (так считало и правительственное крыло социологов 60 — 70-х годов XX века), то развивать какую-то другую теорию запрещалось. Был введен запрет на изучение основных проблем общества, власти и собственности, не говоря уже о десятках конкретных тем, начиная от стратификации (социального неравенства) и заканчивая с*ксом.

Иван Дмитриевич Ермаков — один из пионеров психоанализа в СССР
Психоанализ
Первоначально психоанализ пережил период бурного расцвета в начале 1920-х годов, когда Иван Дмитриевич Ермаков открыл Государственный психоаналитический институт, издал переводы работ Фрейда и Юнга. Затем был отвергнут, как «буржуазное учение» и практически не развивался. Почему? Потому что фундаментальный предмет изучения психоанализа — бессознательные мотивы поведения, берущие начало в скрытыхполовых расстройствах, — никак не вязался с осознанной борьбой угнетаемого пролетариата с капиталистическими эксплуататорами. И вообще, какой с*кс?! В СССР его не было.
Генетика, психоанализ и экология были объявлены «буржуазными лженауками».
Экология
На экологию в СССР тоже было наложено табу. Данные науки объективно показывали заметное отставание «страны победившего социализма» от «загнивающего Запада» по многим параметрам качества жизни, в том числе по таким фундаментальным как общественное здоровье и качество окружающей среды. Поэтому экология человека не только не развивалась, но само ее существование в Советском Союзе всячески осуждалась. На базе марксистско-ленинской философии горе-теоретики доказывали, что экология человека — «буржуазная лженаука», которая базируется на ложных концепциях и представляет собой вариант социал-дарвинизма. Но принципы, лежащие в основе экологии человека, постепенно пробивали себе дорогу, и, в конце концов, она завоевала свое место в современной отечественной науке.

Одним из весьма распространенных в сегодняшней России пропагандистских мифов является миф о сталинских гонениях на кибернетику. Состоит он примерно в следующем. На Западе умные люди придумали новую науку кибернетику, а у нас же сталинские сатрапы и мракобесы объявили ее буржуазной лженаукой, подвергли гонениям, что имело катастофические последствия и привело к гигантскому отставанию СССР в области вычислительной техники и информационных технологий. Часто еще всплывает фраза «кибернетика — продажная девка империализма», приписываемая то Сталину, то Жданову, впрочем некоторые считают, что продажной девкой Лысенко называл генетику. Уже было опубликовано несколько неплохих статей, ничего не оставляющих от этого мифа; см., например, эту: http://www.specnaz.ru/istoriya/408/
Эти работы показывают, что никаких «антикибернетических» гонений не было, а была пара мало кем читанных статей, критикующих некоторые философские аспекты нового научного направления и не повлекших никаких оргвыводов или запретов. Разумеется, фраза про «продажную девку империализма» была придумана каким-то остроумцем из советских м.н.с.-ов уже в хрущевские оттепельные времена и никогда не произносилась ни Сталиным, ни Ждановым, ни Лысенко, ни про кибернетику, ни про генетику.
Более того, было уже много хороших материалов про историю развития вычислительной техники в СССР, ясно показывающих, что именно в сталинские годы у нас успешно создавались первые компьютеры, называемые тогда ЭВМ, а значительное отставание от американцев в этой области началось с конца 60-ых годов. Однако, мало кто описывал историю кибернетики в СССР в годы после предполагаемых гонений, в хрущевско-брежневское время. Ведь разумно было бы ожидать, что когда кибернетика была официально признана в СССР очень важной и нужной наукой, после направления туда гигантских средств и ресурсов, была получена какая-то большая отдача. Вот об этом-то мне и хочется здесь поговорить.
Начнем с самого простого вопроса: «Что такое кибернетика?» Ответ на этот вопрос оказывается, однако, не столь простым. Если вы зададите этот вопрос жителю России, далекому от точных наук, то он скорее ответит что-нибудь вроде: «Кибернетика — современная наука, объясняющая, как строить компьютеры, роботы и прочие умные машины.» Наверное, он отнесет к кибернетике все, связанное с программированием. Человек же, получивший неплохое советское техническое или физико-математическое образование, скажет, что отцом кибернетики был знаменитый американский ученый Норберт Винер, который ввел этот термин в своей опубликованной в 1948-ом году книге «Кибернетика», заложившей основы новой науки. Кибернетика же определялась Винером, как наука об управлении и связи в системах самой разной природы, включая технические и биологические. То есть, налицо некоторый зазор между научным определением кибернетики и представлением о ней в массовом сознании. Как будет показано далее, это отнюдь не случайно.
В 1958-ом книга Винера была издана у нас и сразу стала необыкновенно популярна. В конце 50-ых-60-ых годах в СССР был настоящий кибернетический бум. Словно грибы после дождя, появлялись научно-исследовательские институты, факультеты ВУЗов, лаборатории, кафедры, отделы, научные журналы, ученые советы, в названиях которых стояло супермодное тогда слово «кибернетика» в самых разных сочетания: техническая кибернетика, математическая кибернетика, теоретическая кибернетика, технологическая кибернетика, экономическая кибернетика, химическая кибернетика, юридическая кибернетика, и т.д, и т.п. Сотни тысяч научных сотрудников и преподавателей было вовлечено в эту сферу. Чем же занималась эта гигантская армия?
Границы новой науки были определены весьма нечетко. Если читать советскую литературу тех лет, то ставилась задача создания новой фундаментальной науки, столь же важной и универсальной, как физика. Предполагалось, что наука эта сформулирует универсальные законы анализа и синтеза сложных систем самой разной физической природы и будет играть самую важную, определяющую роль в научно-техническом прогрессе. Часто звучала идея, что в новой науке концепция информации будет столь же важна, как концепция энергии в физике. На деле же, в основном, изучались несколько специфических областей, стоящих на границе технических наук и математики: математические теории управления и обработки сигналов, теория информации. Часто туда включались элементы теории автоматов и алгоритмов (того, что на Западе обычно называется «theoretical computer science»), распознавания образов, иногда даже куски вычислительных методов или исследования операций. В целом, все эти институты, факультеты и кафедры кибернетики занимались тем, чем привыкли заниматься выбившие их под себя советские научные боссы. Вокруг всего этого возникло гигантское количество всякого прохиндейства. Например, среди дармоедов, кормившихся на кафедрах марксистско-ленинской философии технических ВУЗов было много, писавших всякую ахинею на тему «философских оснований кибернетики».
Очень интересен здесь следующий момент. Если мы посмотрим на родину кибернетики США, то увидим разительно отличающуюся картину. Никаких факультетов или гигантских институтов кибернетики там не возникло. Есть люди занимающиеся перечисленными областями, но их совсем не так много и они тонким слоем распределены по инженерным, компьютерным или математическим факультетам. Если вы, например, захотите изучать теории управления или обработки сигналов в каком-нибудь приличном американском университете, то вам нужно будет взять на факультете Electrical Engineering курсы «control engineering» и «signal processing», при этом никаких работ Винера там в программе не будет. Слово «cybernetics»есть в названиях нескольких научных журналов, но журналов маргинальных и малопрестижных. Книга Винера и сам термин кибернетика куда менее популярен в США, чем был у нас. Есть сейчас слова киберпространство, кибертерроризм, киберкaфе, даже киберпанки, и если спросить среднего американца про кибернетику, то он ответит, что это что-то про Интернет и виртуальную реальность. Но ведь все это никакого отношения к идеям Винера не имеет.
Иными словами, кибернетика пышно расцвела именно в хрущевском СССР, а в Америке почему-то отношение к ней было куда более сдержанным.
Посмотрим какие же плоды дала эта наука. Самые важные достижения научно-технического прогресса в последние несколько десятилетий 20-ого века случились в области компьютеризации, автоматизации, телекоммуникаций, информационных технологий и т.п. Именно здесь произошли самые важные прорывы. Дешевые персональные компьютеры, встроенные микропроцессоры на каждом шагу, Интернет, мобильные телефоны и т.п. — появление всего этого имело огромные экономические, социальные, военные, пропагандистские последствия. И именно в этой СССР проиграл Западу вчистую, что сыграло важную роль в крахе СССР. При этом, на предыдущем этапе, СССР вполне смог выдержать конкуренцию в области принципиально важных тогдашних технологий — ядерное оружие, атомная энергетика, космос, ракеты. Распространенная точка зрения состоит в том, что поражение в области новых высоких технологий в значительной степени было обусловлено сталинскими преследованиями кибернетики. На деле же, замечательные достижения в этих областях на 99% были обусловлены развитием электроники, совершенствованием элементной базы, вещами сугубо технологическими. Вклад же теоретических, математизированных областей, объединенных у нас под вывеской «Кибернетика» был довольно скромным. А идеи книжки Винера значительного влияния на научно-технический прогресс вообще не имели.
Одной же из причин этого поражения СССР была провальная научно-техническая политика, состоявшая, в частности, в гипертрофированном финасировании вот этой кибернетики.
Я бы привел тут такую аналогию. Предположим строительная отрасль была бы организована следующим образом. Есть огромное число людей, занимающихся математическим моделированием строительных работ, пишущих на эту тему уйму диссертаций, статей, монографий. Огромные ресурсы пущены на такую третьесортную математику, часто довольно далекую от реальности. При этом, готовится совершенно недостаточно каменщиков, плотников и штукатуров, производится катастрофически мало гвоздей, кирпича и цемента. Именно так выглядела область высоких технологий в СССР 60-80-ых годов.
Например, реально народному хозяйству требовалось громадное количество программистов. Бесчисленные же «кибернетические» факультеты очень мало учили студентов собственно программированию, а учили математике и всяческим малополезным теориям. После окончания, эти бывшие студенты быстро забывали всю ту ерунду, которой забивали их головы, и учились программированию уже на рабочем месте. Вообще, советский кибернетический бум создал громадную армию прикладных математиков, полезность которых для реальных приложений была весьма сомнительной. Чистые же математики, по моим наблюдениям, обычно считали их не прикладными, а просто плохими. Не мне об этом судить, но наверное, рациональное зерно в такой точке зрения было.
Говоря коротко, проблема с кибернетикой в СССР была не в том, что она изучала какие-то лженаучные вещи. Нет, все это вполне разумные и легитимные области для научных исследований. Проблема в том, что они отнюдь не столь важны и перспективны, как это представляли лидеры этой области в СССР. Как фундаментальное, так и прикладное значение этих областей довольно скромно, во всяком случае, совершенно недостаточно для создания громадных институтов и факультетов. На мой взгляд, можно рассматривать кибернетику, как гигантскую аферу советской научно-технической интеллигенции. Афера была в том, что вещам третьестепенным был придан статус первостепенных. И термин «кибернетика» оказался поразительно удачным для получения государственных средств. Действительно, если вы просите на какую-то достаточно теоретическую область, то много вам не дадут. Слово же «кибернетика» вызывает ассоциации с роботами, компьютерами и прочими умными машинами, а на это могут дать очень много.
Интересен вопрос: «А был ли вообще Норберт Винер крупным ученым?» Да, был. Он был довольно известным математиком (название его автобиографической книги: «Я — математик»), решившим также ряд достаточно важных прикладных задач. То, что действительно осталось от него в науке, связано с терминами «винеровские случайные процессы», «винеровская теория фильтрации». И это отнюдь не было в сталинском СССР чем-то запретным или неслыханным — близкие результаты независимо получил в те же годы известный советский математик А.Н.Колмогоров. Но вот создателем новой важной науки Винер не стал. По моему глубокому убеждению, его «Кибернетика» — слабая и не слишком полезная книжка. Мне кажется, Винера поразила болезнь, которую я бы назвал синдромом Льва Толстого (амбициозный и честолюбивый классик русской литературы под старость захотел еще и славы великого философа, а то и основателя новой религии). Эта болезнь часто поражает стареющих маститых профессоров, когда они, не довольствуясь уже заработанными в своих областях почестями, начинают заниматься какими-то привлекающими куда большее общественное внимание областями. Обычно, ничего дельного из этого не получается.
Сегодня, более 50 лет спустя, можно уверенно сказать, что предложенная Винером и подхваченная в СССР программа построения новой фундаментальной науки полностью провалилась. В 2005-ом году ничего подобного нет и не предвидится. Кибернетика оказалась еще одной шестидесятнической иллюзией. Кибернетический миф очень здорово подошел атмосфере хрущевской оттепели («Девять дней одного года», «И на Марсе будут яблони цвести»), нарождающейся субкультуре советского НИИ. По моим наблюдениям, даже легенда о том, что сталинские сатрапы называли кибернетику «продажной девкой империализма» привлекало к этой области дополнительное внимание советских интеллигентов. Этот факт почему-то возвышал их в их собственных глазах.
Кибернетика действительно оказалась лженаукой, но отнюдь не буржуазной, а сугубо советской, весьма характерной для хрущевско-брежневского СССР.

Особенности науки XX века

Скажем вначале несколько слов об уже обратившем на себя, вероятно, внимание читателя фактическом ограничении круга научных дисциплин, привлеченных нами к анализу воздействия науки на развитие философии. Здесь по преимуществу говорится о физике и о ее воздействии на другие дисциплины и отрасли знания. Общая картина современной науки может быть результатом ее анализа с различных точек зрения. Среди них имеет право на существование и анализ воздействия современной физики на познание в целом. Основа такого подхода – в особом, характерном для нашего времени, места физики в общей системе развивающегося знания. Это, конечно, не единственный аспект; для современной науки весьма характерно и то, что можно назвать гуманитаризацией, – возрастание удельного веса общественных проблем и растущее воздействие разработки общественно-научных проблем на естествознание. Однако и преимущественное внимание в данной книге к естественнонаучным и даже еще уже – физическим проблемам не лишает анализ общенаучного значения и права говорить о взаимосвязи науки и философии.

Роль физики в современной науке не похожа на роль механики в XVII-XVIII веках, когда механические законы претендовали на место того носителя космической гармонии, к которому в последнем счете сводятся все закономерности бытия. Но физика занимает в современной науке совсем иное место и по сравнению с XIX веком. Тогда физика противостояла диктатуре механики и, подобно другим дисциплинам, утверждала несводимость и специфичность своих законов. Сейчас она объединяет микромир и мегамир и в этом смысле, не покушаясь на специфичность других дисциплин, создает неклассическое представление о иерархии бытия, в которой Метагалактика сближается с элементарными частицами. Генезис такой, неизвестной прошлому, картины мира имеет важное значение для выяснения связи науки и философии. Подобная связь в определенной степени является импульсом и вместе с тем результатом распространения понятий современной физики на другие отрасли знания.

Такой процесс можно наблюдать, например в биологии, которую иногда считают преемницей физики, сменяющей ее на посту лидера науки. Если подобная перспектива в каком-то смысле реальна, то она совсем не означает вторжения биологических понятий, закономерностей и методов в физику. Вместе с тем указанная перспектива в основном связана с развитием молекулярной биологии, которая гораздо ближе в своих тенденциях и прогнозах к квантовой физике, чем к классической макроскопической биологии. Молекулярная биология – пример очень общей тенденции современной науки, тенденции, которую можно было бы назвать физи-кализацией науки, правда с одним существенным уточнением: такое название целиком относится к неклассической физике.

К этому следует добавить, что физикали-зация означает явное устранение из научной картины мира каких бы то ни было неизменных, априорных сущностей, ибо современная физика, объединившая космос и микрокосм, не оставляет ничего, что могло бы считаться «зафизической» (шире – «занаучной») сущностью мира. Никогда еще так ясно, как в современной науке, не было продемонстрировано, что субстанция неотделима от своих проявлений.

Следует подчеркнуть, что характеристика современной физики может быть лишь детализацией и демонстрацией эволюции общих особенностей науки XX века. Такие более общие особенности являются особенностями неклассической науки в отличие от классической. Но ответ на вопрос: «Что такое наука XX века?» – включает и другое – определение зависимости самого периода истории от состояния науки. Уже в XVII-XVIII веках эта зависимость была явной, а в XIX веке она стала в значительной мере определяющей. В 1886 году на чествовании французского химика-органика М. Шевреля (ему исполнилось сто лет) К. А. Тимирязев сказал юбиляру: «Дитя века разума, Вы – живое воплощение века науки».

Действительно, век разума, XVIII век, был периодом, когда идеи великих рационалистов предыдущего столетия приобрели историческое бытие и стали оказывать решающее воздействие на реальные судьбы людей. В этом столетии английская промышленная революция превратила рациональную схему мироздания – классическую механику в научную основу машинной индустрии. В этом же столетии плеяда великих мыслителей-рационалистов привлекла к суду отвлеченного разума все общественные институты, и вскоре Великая французская революция исполнила его приговор.

В XIX веке рационализм воплотился в систему представлений – стройную, детально разработанную, проверенную экспериментами и практикой. Эта система казалась непоколебимой в своих основах, хотя и претерпевала глубокие изменения. В XIX веке люди узнали о неевклидовой геометрии, в которой перпендикуляры к одной и той же црямой пересекаются или, наоборот, расходятся. Они узнали много нового и о себе. Общественные отношения, которые представлялись незыблемыми, оказались преходящими, чреватыми социальными революциями.

Наука в этот период знала о подвижности своего русла, о его поворотах. Представления о таких поворотах были обобщены в диалектической философии. Но повороты были более или менее спорадическими. Они позволяли науке забывать о них в течение долгих периодов сравнительно спокойного развития. И, что самое главное, они не оказывали быстрого и непосредственного воздействия на жизнь людей. Наука в течение десятилетий как бы отдыхала от каждого потрясения, спокойно развивая новые принципы, которые снова, как и прежние, уже ушедшие в прошлое, казались непоколебимыми. Результаты науки приобретали ореол очевидности, и стиль научного мышления в целом не был парадоксальным. В той или иной мере парадоксы всегда были свойственны науке. В свое время мысль об антиподах, живущих на другой стороне Земли, на «нижней» ее стороне, и не падающих «вниз», была невероятно парадоксальна. Парадоксальными были представления о движении Земли, об изменении видов живых существ. Но старые парадоксы исчезали, они растворялись в научном знании, претендовавшем на очевидную правильность.

XX век начался неисчезающими научными парадоксами. Наука XX века как бы для того, чтобы оправдать подобное хронологическое название, может начать свою историю с 1900 года, когда М. Планк нашел, что излучение света происходит не непрерывно, а минимальными порциями, квантами. Вскоре, в 1905 году, А. Эйнштейн разъяснил, почему свет распространяется с одной и той же скоростью относительно тел, движущихся навстречу световому лучу, и относительно тел, которые лучу приходится догонять.

Сейчас, почти столетие спустя, подобные парадоксы должны были стать трюизмами. Этого не случилось. Парадоксы квантовой теории и теории относительности переставали быть парадоксами только при переходе науки к еще более парадоксальным утверждениям. Началась цепная реакция парадоксов. Вскоре после Планка выяснялось, что свет не просто излучается порциями, но и состоит из частиц – квантов света, фотонов. А представление о неизменной скорости света привело к еще более парадоксальным утверждениям об изменении массы тела в зависимости от скорости его движения, о возможности освобождения очень большого количества энергии при уменьшении массы тела, о превращении частиц с ненулевой массой покоя в излучение, в частицы с нулевой массой покоя, о кривизне пространства, о расширяющейся Вселенной.

Цепная реакция парадоксов оказала большое влияние не только на стиль научного мышления, но и на бытие людей, на технику, на производство, на цивилизацию в целом. В науке XIX века марши сменялись привалами. Антракты были длительнее, чем сами акты. Теперь пьеса идет без антрактов, повороты науки настолько радикальны, что их воздействие продолжается долго, причем не замедляется, не затухает, а ведет к новым, еще более парадоксальным утверждениям. Для науки XX века характерен безостановочный марш.

Соответственно изменилось понятие великого открытия. Раньше величие научного открытия измерялось длительностью сохранения его фундаментальной роли. Великим открытием считали результат эксперимента или обобщение, приводившее к новой научной теории, надолго, быть может, навсегда, сохранившей неизменной свою классическую форму и служившей фундаментом для столь же прочных выводов. Сейчас величие открытия измеряется его динамическим воздействием на науку, радикальностью и общностью его резонанса, вызванных им дальнейших открытий, дополняющих, модифицирующих и изменяющих его. Рассказать о таких великих, фундаментальных открытиях – значит рассказать об их резонансе.

В науке XX столетия меняется область, в которой получают фундаментальные открытия или ждут их. Сейчас, в последней четверти века, преимущественно ждут: значение той или иной области науки определяется прогнозом, тем преобразованием картины мира, которого можно ожидать от ведущихся в этой области исследований.

В начале столетия такой областью стала электродинамика, затем – атомная физика, потом – физика атомного ядра. Теперь ею стала физика элементарных частиц и астрофизика. Сейчас на Земле начался атомный век – результат великих открытий первой половины XX века в области ядерной физики. Можно думать, что развитие теории элементарных частиц приведет к открытиям, которые станут в XXI веке основой после-атомной цивилизации.

Для XX века характерна огромная концентрация материальных и интеллектуальных усилий общества, направленных на развитие науки. Поражают масштабы общественного труда, уделяемого исследованию природы. Наблюдаются несопоставимые с прошлым темпы роста числа ученых, уже в начале века во много раз превзошедшие темпы роста числа представителей остальных профессий. Если так пойдет и дальше, то число ученых превысит число остальных людей на Земле. Может быть, это будут кибернетические роботы? Такой прогноз оставим авторам фантастических романов о будущем. Впрочем, наверное, и они не воспользуются им. Кибернетика не заменяет человека комбинацией электронных приборов, а вооружает его и позволяет ему сосредоточиться на наиболее достойной человека деятельности, на творчестве, на все более глубоком познании природы, на все более разумном подчинении природы целям человека. Но, может быть, необычайно быстрый рост научных кадров отражает начальный этап современной эволюции науки и впоследствии число ученых будет расти медленнее. По-видимому, в течение оставшихся лет XX века и в следующем столетии будет происходить с нарастающей скоростью более глубокий и органичный процесс включения исследовательских задач в содержание труда. При быстром и радикальном изменении технологии, основанном на переходе к принципиально новым физическим процессам, производство, его реконструкция и эксперимент сливаются воедино.

В XX веке человечество уделяет науке все большую часть своих трудовых ресурсов и в том смысле, что во много раз выросли масштабы экспериментальных установок. В 1610 году Галилей опубликовал результаты своих астрономических наблюдений, и это явилось началом астрономической революции. Ныне человек посылает в космос автоматические и обитаемые астрофизические обсерватории, лаборатории и вскоре, вероятно, разместит наблюдательные приборы на орбитах планет земной группы, а может быть, и на их поверхности.

Взгляд человека, направленный не в космос, а в микромир, – это также и широкие народнохозяйственные акции, связанные с большими затратами общественного труда. Чтобы «разглядеть» процессы, происходящие в областях порядка 10-15 см и 10-25 сек., необходимы колоссальные энергии частиц, бомбардирующих другие частицы и атомные ядра. Подобные масштабы энергии встречаются в космических лучах. Но ученым нужно свободно маневрировать высокими энергиями. Очень высокие, хотя и не столь огромные энергии получают в гигантских ускорителях элементарных частиц.

Вокруг таких ускорителей вырастают большие научные города. Когда говорят о научных центрах XVII века, в сознании возникает образ придворного кружка, где Галилей критикует аристотелевскую концепцию мироздания. Научный центр XVIII века ассоциируется с уединенным кабинетом Лагранжа, где он пишет формулы аналитической механики. Научный центр XIX века – это уединенная обсерватория или лаборатория Фарадея, где он в одиночестве наматывает проволоку на железный сердечник, или (в конце века) зал Сорбонны, где Пуанкаре излагает законы небесной механики, или Петербургский университет, где Менделеев рассказывает о периодическом законе.

Научный центр XX века – это большой город (его по традиции еще называют городком), где тысячи людей трудятся, чтобы найти новый элемент периодической таблицы или новую элементарную частицу.

Как же назвать XX век в его зависимости от науки? Веком атома? Веком космоса? Веком кибернетики?… Список возможных названий можно было бы значительно расширить. В литературе мелькают и другие названия: «век полупроводников», «век информации», «век биологии».

И действительно, разве не атомная энергия дала человеку новую энергетическую базу производства и разве не ее открытие явилось вместе с тем открытием еще более мощной силы – силы ассоциированной науки? Разве не атомная энергия внушила человечеству самые радужные надежды и самые тяжелые опасения?

А космические исследования, выход человека за пределы земной атмосферы – разве это великое событие мировой истории не характеризует наше столетие? А кибернетика? Ведь это она существенно влияет на характер труда, производства. Среди всех эпитетов нашего века, характеризующих специфику его науки, «век биологии» кажется особенно показательным. В середине столетия физиология, химия, физика, математика объединились, чтобы раскрыть загадку живого вещества и жизни. Если макроскопическое решение этой загадки в XIX веке позволило говорить о «веке Дарвина», то ее микроскопическое решение – картина молекулы живого вещества и закодированной в ней наследственности организма – дает право назвать наше столетие веком молекулярной биологии и ее неисчерпаемых результатов в генетике, медицине и т. д.

Но каждый из претендентов на обобщающее название века все же кажется недостаточным. И не потому, что наряду с атомной энергетикой выросли кибернетика, молекулярная биология, космические исследования. Перечисленных названий недостаточно потому, что между всеми отмеченными в них тенденциями существует глубокая связь и по исходным теоретическим позициям и экспериментальным данным, и по стилю научного мышления, и по экономическому и культурному эффекту. Забегая вперед, ограничимся кратким замечанием об общем эффекте науки XX века, характерном для всех отраслей производства, для культуры и стиля мышления. Этот эффект – несравнимый с прошлым динамизм развития различных областей общественной жизни, непосредственно зависящий от характера современной науки.

Наука XX века – прежде всего неклассическая наука. И не только потому, что она отказалась от классических устоев, претендовавших на окончательный и абсолютно точный характер. Она неклассическая по своему стилю. Именно поэтому она приводит не только к незатухающей скорости научно-технического прогресса. Она ускоряет и технический, и культурный прогресс.

В «Рассуждениях о науках и искусствах» Ж. Ж. Руссо вспоминал о пришедшей из Египта в Древнюю Грецию легенде о боге, создавшем науку. Этот бог, говорит легенда, был врагом человеческого спокойствия. Различие между наукой XX и XIX веков состоит в том, что старая наука не так явно и не так непрерывно «беспокоила» человечество, не так явно демонстрировала враждебную человеческому спокойствию тенденцию своего легендарного создателя. Динамизм науки в XX веке отчетливо виден, если сравнить то, что она получила от предыдущего века, и то, что она передаст следующему.

К концу XIX века сложилось довольно устойчивое представление о мире. В его основе лежала классическая механика, законы Ньютона, которые казались непоколебимыми. На них наслаивались законы физики. Они были несводимы к механике. В термодинамике не обращали внимания на поведение отдельной молекулы, а интересовались лишь средними скоростями молекул, т. е. температурами. Было известно, что тепло переходит от тел с более высокой температурой к телам с менее высокой температурой и, таким образом, температура выравнивается. Поэтому в теории тепла существовало понятие необратимого процесса: с течением времени в изолированной системе необратимо возрастает равномерность распределения тепла, то, что называется энтропией. Этим теория тепла явным образом отличается от механики, где все процессы могут идти и в обратном направлении. Отличаясь от механики, термодинамика, изучающая поведение больших множеств молекул, не могла в своей физической расшифровке полностью оторваться от кинетической теории, рассматривающей движение и соударение отдельных молекул, при котором, согласно общему убеждению, они целиком подчиняются законам механики, законам Ньютона.

В электродинамике центральным понятием было понятие электромагнитного поля. Магнитное поле вызывается изменением электрического поля, электрическое – изменением магнитного поля. Поэтому, когда где-нибудь возникает переменное электрическое поле, оно индуцирует магнитное, которое в свою очередь оказывается переменным, индуцируя электрическое поле, и тем самым начинают распространяться электромагнитные колебания. К концу XIX века уже было известно, что частям видимого спектра соответствуют электромагнитные волны различной частоты, причем электромагнитные волны с большей частотой, чем те, которые дают фиолетовый свет, – это невидимое ультрафиолетовое излучение, а за волнами меньшей частоты, дающими видимый красный свет, простирается область электромагнитных волн еще меньшей частоты – невидимое тепловое, инфракрасное излучение. В самом конце века стали известны волны с еще большими частотами, чем в ультрафиолетовой части спектра, – рентгеновские лучи и гамма-излучение радия. За инфракрасными лучами были открыты волны во много раз меньшей частоты и соответственно с большей длиной волны – радиоволны, нашедшие применение в последние годы прошлого столетия.

Электродинамические и оптические процессы ученые стремились объяснить по аналогии с механическими процессами. Основой этой тенденции была гипотеза эфира. Волны в эфире – это свет и все другие электромагнитные волны. Таким образом, понятие электромагнитного поля как будто не выходило за рамки механического представления о телах, которые передвигаются в пространстве, притягивая и отталкивая друг друга, не выходило за рамки простой, непротиворечивой, традиционной картины мира.

Гипотеза эфира была как бы выражением «викторианской» тенденции в науке. Имя долго царствовавшей английской королевы Виктории стало в XIX веке символом традиционности и устойчивости. В науке было немало «викторианских» понятий, исключавших «беспокойство». С их помощью приходили к выводу, что она развивается путем непротиворечивой логической и экспериментальной конкретизации некоторых абсолютно устойчивых исходных аксиом. По это не всегда удавалось. В частности, эфиру приходилось приписывать весьма противоречивые свойства. С ним было много хлопот. М. Планк говорил, что эфир – это «дитя классической физики, зачатое во скорби».

Очень тяжелым испытанием теории эфира была невозможность зарегистрировать движение тел относительно эфира. Если тела при своем движении увлекают эфир, то свет должен распространяться в движущейся системе с одинаковой скоростью туда и обратно (как пловец в бассейне на движущемся корабле будет пересекать этот бассейн в длину с одной и той же скоростью, проплывая это расстояние за одно и то же время и вперед – по движению корабля, и назад – от носа корабля к корме). Но в данном случае свет будет распространяться в этой системе с иной скоростью, чем его скорость в недвижущейся системе, т. е. в неподвижном эфире, и различие можно будет заметить. Если же движущиеся тела не увлекают эфир, то свет будет распространяться с различной скоростью вперед и назад в движущейся в эфире системе (как пловец будет с различной скоростью плыть вперед и назад в движущемся решетчатом бассейне, сквозь который свободно проходит не увлекаемая бассейном вода).

Однако многочисленные эксперименты не продемонстрировали разницы скорости света ни по отношению к данной системе, ни по отношению к внешнему пространству. Таким образом, оба предположения оказались экспериментально не подтвержденными. Нельзя говорить, что тела при своем движении увлекают эфир, и нельзя говорить, что тела движутся в эфире, не увлекая его. Мы вернемся к этой коллизии немного позже, при характеристике теории относительности. Пока же отметим, что в конце XIX века эта ситуация внушала смутные опасения, но не давала повода для решительного отказа от эфира, не укладывавшегося в норму поведения, свойственную обычным телам.

В целом наука XIX века склонялась к мысли о законченной картине мира, к представлению о том, что эта картина мира завершена в ее фундаментальных основах. Английский физик Дж. Дж. Томсон утверждал, что науке осталось лишь уточнять детали, поскольку в основном человек уже знает, как устроен мир. Конечно, такой крайний взгляд не был общим. Многие понимали, что перед наукой бесконечный путь преобразования фундаментальных идей. Но и сам Томсон, говоря о безоблачном небе науки, указывал на два облака: затруднения теории теплового излучения и отсутствие изменения скорости света в движущихся телах. Из этих облаков и грянул гром. А пока он не грянул, наука XIX века могла к окончанию столетия предъявить весьма внушительную схему мироздания.

В основе этой схемы лежит идея сохранения основных законов бытия при переходе от одного звена иерархии вещества к другим, от атома к молекуле, от молекулы к макроскопическим телам, в частности к живому организму, затем к планетам, к солнечной системе, к звездам, к галактике.

В начале этой иерархии находится атом. Атомы считались твердыми шариками, обладающими различной массой и различными физическими и химическими свойствами. Было известно несколько десятков различных типов атомов, различных элементов, входящих в периодическую таблицу. На исходе столетия стали известны электроны – минимальные заряды электричества. Возникло представление о субатомах – частицах меньших, чем атом. Такими частицами служили электроны. Это, однако, не могло нарушить спокойствия. Принципиальная возможность дальнейшего перехода к телам «меньше атома» и «больше галактики» всегда допускалась. Еще в начале нашего столетия по поводу электронов повторяли старые концепции бесконечной иерархии, которая тянется в обе стороны, причем структура все больших включающих и все меньших включенных систем одна и та же.

Второе звено иерархии – молекула. В течение XIX века химия узнала о структуре громадного количества сложных веществ и определила состав их молекул. О природе сил, связывающих атомы в молекулы, знали так же мало, как о природе различий между атомами. Но об этом не слишком беспокоились. Наука могла идти вперед, не углубляясь в эти вопросы. То же можно сказать и о больших, включающих системах. Что касается живых организмов, то наука всесторонне изучила макроскопические законы естественного отбора, но остановилась перед проблемой наследственности и изменчивости организмов. Благодаря Г. Менделю стали известны некоторые законы наследственности, но природа их не была раскрыта. Теория Дарвина представлялась мощной демонстрацией универсальности классической науки. Она показала, что материя, состоящая из дискретных частей, обладающих свойствами притяжения и отталкивания и подчиняющихся в своем поведении законам классической механики, может эволюционировать и дойти до высокоорганизованных структур, до той целесообразности, которая всегда поражала людей при взгляде на органический мир.

Дальше простирались еще более высокие звенья иерархии – солнечная система, само Солнце, еще дальше – звезды, а еще дальше – внегалактические туманности, иные галактики. Этот мир казался царством Ньютона. Однако и здесь были некоторые недоразумения. Вселенная представлялась бесконечной, и в этом случае небесным телам угрожали бесконечно большие силы тяготения, действующие в бесконечной по протяженности, заполненной тяжелыми телами Вселенной. Свет бесконечных звезд должен был превратить небо в сплошную сверкающую пелену. Но идея конечности доступной исследованию Вселенной не возникала.

В целом XX век застал очень стройное и, казалось, достоверное в своей основе здание науки предыдущего столетия. В XX веке это здание не было разбито. Оно только зашаталось, и научная революция нашла для него новый фундамент, на котором старые знания получили ограниченное место. Это следует подчеркнуть. Научная революция не была очищением площадки для нового строительства. В науке не бывает катаклизмов, которые Ж. Кювье видел в прошлом Земли. История науки – непрерывный процесс. Н. Бор в начале нашего столетия, создавая модель атома, выдвинул принцип соответствия: при некоторых предельных условиях соотношения квантовой механики переходят в соотношения классической механики. Теория относительности Эйнштейна в случае медленных движений и процессов, при которых поглощаются или выделяются не слишком большие энергии, приходит к соотношениям механики Ньютона. Наука XX века подошла к классическому наследству как к совокупности теорий, уже не являющихся абсолютно справедливыми, абсолютно точными и абсолютно общими. Они становятся относительными и ограниченными, но получают более солидное обоснование.

Что застает в науке XXI век? Об этом трудно сказать – развитие науки приобрело такую стремительность, что за оставшиеся два десятилетия может произойти много неожиданного. Но кое-что можно сказать с большой достоверностью.

Как уже говорилось, XX век застал науку в виде стройного здания, претендующего на длительное сохранение без дальнейших перестроек. XXI век застанет науку далеко не в столь законченном и стройном виде. Здесь мы подходим, быть может, к самой важной особенности науки нашего века.

В начале столетия наука нашла для своего здания не только новые свободные площадки и не только методы перестройки старых сооружений, но и более глубокий и прочный фундамент. Но оказалось, что под этим новым фундаментом скрывается еще один. И по-видимому, отныне нельзя было строить только вверх, воздвигая все новые этажи. Наука должна была все более опускаться вниз, ко все более глубоким фундаментальным основаниям. И вот эти, очевидно, бесконечные поиски все более глубокого и прочного фундамента и встретит XXI век.

В самом деле, в течение XX века наука раздвинула мироздание вширь. Новая астрономическая революция позволила узнать много совершенно неожиданного о галактиках, находящихся от нас на расстояниях в миллиарды световых лет. Но дело не в этих масштабах. Мы знаем, что структура и эволюция Вселенной не могут быть познаны без дальнейшего коренного фундаментального преобразования основных физических принципов, основных принципов математики, без преобразования самой логики. Они не могут быть познаны и без нового представления об элементарных частицах. И здесь пафос современной науки не в том, что мы изучаем процессы в областях порядка 10^-15 см и 10^-25 сек., а в том, что здесь кончается путь, которым наука шла до сих пор, когда природу тела объясняли ссылкой на его внутреннюю структуру, на расположение и движение меньших частиц, входящих в его состав.

Мы теперь знаем о возможности существования малой частицы, состоящей из более крупных. Это совершенно парадоксальное для классической науки утверждение представляется весьма вероятным. Крупные частицы могут так сильно взаимодействовать одна с другой, что их совокупная масса уменьшится, и в результате перед нами окажется частица с очень малой массой, близкой к нулю. Появляется представление о частице, составленной из очень больших масс. Трудно сказать, к чему приведет развитие подобных идей. Но они иллюстрируют однозначный и достоверный прогноз: XXI век застанет в науке начавшийся процесс непрерывных поисков новых фундаментальных принципов. В этом великий вклад науки нашего века в историю цивилизации. Теперь уже покончено с представлением о неподвижном фундаменте науки, на котором меняется лишь надстройка. В современнои науке ремонт и расширение надстроек неотделимы от возведения нового фундамента.

Поделитесь на страничке

Следующая глава >

Физика

В конце XIX в. Д. К. Максвелл разработал электромагнитную теорию света, согласно которой имеются невидимые электромаг­нитные волны, передающие электричество в пространстве. Позд­нее немецкий учёный Г. Герц подтвердил её опытным путём. На ос­новании этих открытий русский учёный А. Попов создал беспро­волочный телеграф. Голландский учёный К. Л. Лоренц разработал электронную теорию вещества, В. К. Рентген обнаружил существо­вание невидимых икс-лучей, проникающих через материальные предметы.

Атомная эра

Французский физик А. Беккерель открыл явление ра­диоактивности, которое в дальнейшем исследовали П. Кюри и М. Склодовская-Кюри. Это позволило английскому физику Э. Ре­зерфорду, а впоследствии и немецкому физику М. Планку, исследо­вать строение атома, опровергнув утверждение о его неделимости. В конце 1930-х гг. немецкие учёные Л. Мейтнер, О. Фриш и О. Ганн доказали возможность цепной реакции деления ядер ура­на с выделением громадного количества энергии. Это означало на­чало атомной эры в истории человечества.

Квантовая механика

В 1900 г. немецкий физик М. Планк опроверг классические пред­ставления о непрерывном характере излучения энергии, доказав, что этот процесс происходит прерывисто, энергия выделяется опре­делёнными порциями — квантами. Это открытие заложило основы современной квантовой механики — одного из важнейших разде­лов современной физики.

Теория относительности Эйнштейна

В 1905 г. немецкий учёный А. Эйнштейн опубликовал статью «Об электродинамике движущихся тел», которая являлась изло­жением так называемой специальной теории относительности. До этой работы физика выглядела абсолютно завершённой сис­темой знаний, теоретически законченной. Эйнштейн полностью изменил научную картину мира, опровергнув наличие абсолют­ных пространства и времени, относительно которых можно рас­сматривать все события — то, на чём базировалась механика И. Ньютона.

Химия

Ещё в конце 60-х гг. XIX в. Д. И. Менделеев изло­жил основы учения о периодичности, открыл периодический за­кон и разработал периодическую систему химических элементов.

Биология

Всемирное признание получила теория условных рефлексов И. П. Павлова. В начале XX в. были сформулированы первые по­стулаты новой науки — генетики. У её истоков стояли чешский на­туралист Г. Мендель, американский учёный Т. Х. Морган и немец­кий учёный А. Вейсман. Научная и практическая деятельность французского учёного Л. Пастера положила начало микробиоло­гии. Американский исследователь А. Флеминг в 1928 г. открыл пер­вый антибиотик — пенициллин. Материал с сайта http://wikiwhat.ru

Психоанализ

Появление теории относительности совпало по времени с соз­данием теории и практики психоанализа, разработанной австрий­ским психиатром З. Фрейдом. Он показал, что существуют особые психические силы, лежащие за пределами сознания (бессознатель­ное), но управляющие поведением человека. Австрийский учёный исследовал подсознательные комплексы человека, влияющие на психологические установки личности — наполеоновский комплекс (стремление к власти), комплекс вины, комплекс неполноценно­сти. В современном мире психоанализ активно применяется в странах Западной Европы и в США.

Картинки (фото, рисунки)


  • М. Склодовская-Кюри и П. Кюри

  • А. Эйнштейн

Категории:На этой странице материал по темам:

  • Научные открытия в первой половине 20 века

  • Русская наука в начале 20 века

  • Доклад на тему наука в россии в начале 20 века

  • Доклад начало революции в естествознании

  • Открытия начала 20 века

Вопросы к этой статье:

  • В чём заключались особенности развития науки в начале XX в.?

  • Назо­вите основные научные достижения начала XX в.

Материал с сайта http://WikiWhat.ru
Стр 1 из 2

Основные модели научной рациональности в философии науки.

В процессе анализа социокультурных параметров научной деятельности был выработан ряд понятий, призванных отразить тонкую взаимосвязь науки и ее общекультурного контекста. Остановимся на таких понятиях, как стиль мышления, тип рациональности, идеал познания.

Тип рациональности. Различают следующие крупные периоды истории науки, отличающиеся устойчивыми чертами и особенностями рационального проекта: это классический и неклассический типы научной рациональности. Существуют также соображения в пользу того, что сейчас уже можно говорить о становлении особого новейшего, постнеклассического типа. Какими атрибутами характеризуются указанные типы рациональности?

Классическому типу рациональности присущи:

1) прямой онтологизм — непосредственное отнесение знаний к самой реальности;

2) монотеоретизм — представление о том, что должна существовать единственная теория, истинно описывающая реальность;

3) объективизм — предельная десубъективизированность знаний, устранение из теории всякого субъективного вклада.

Неклассическая рациональность, выступившая на сцену в начале ХХ века (особенно в связи со становлением квантово-релятивистской картины мира), серьезно усложняет представления о научном познании. Она, в отличие от классического идеала, акцентирует:

1) методологизм — понимание того, что содержание знания может быть во многом коррелятом самого же метода: например, математическая гипотеза в физике вводит сложные конструкции, которые (пока) не могут быть проинтерпретированы онтологически, так что вопрос о их физическом статусе становится отложенным; неклассическая рациональность допускает, что знания и реальность могут соотноситься непрямым, весьма сложным образом;

2) политеоретизм — возможность сосуществования нескольких альтернативных описаний реальности;

3) неустранимость субъекта — признание и изучение субъективной составляющей науки (прежде всего в виде методологических средств и возможностей субъекта); понимание того, что научные знания могут относиться не к самому объекту, а к сложному комплексу субъектно-объектных взаимодействий.


Черты постнеклассической рациональности заостряют неклассическое мышление в направлении:

1) признания ограниченности научных знаний и сверхсложности реальности; мы обладаем лишь грубыми теоретическими моделями, недостаточно отражающими высокий уровень спонтанности и самоорганизации мира;

2) требования учета ценностных параметров мира, так как даже малое вмешательство может приводить к катастрофам и разрушению сложившихся в мире состояний и систем.

Приход новых концептуальных ориентиров не отменяет действенности старых. Так, в определенных познавательных ситуациях могут по-прежнему доминировать классические установки, что определяется объективными параметрами самих этих ситуаций. Скажем, в ситуации описания механических свойств системы из нескольких макрообъектов мы по-прежнему используем механику материальной точки, сохраняя все предпосылки классической науки.

Основные тенденции современной науки.

Наука играет огромную роль в современном мире. Наука сегодня — это колоссальное предприятие, в котором задействованы многие тысячи участников, дорогостоящее оборудование, разветвленные административные структуры. Современный социальный институт науки получил название «большой науки».

Развитие науки является частью общей динамики современных цивилизационных процессов. Мир становится единым, более унифицированным, чем прежде. Эту важнейшую особенность нынешней цивилизационной ситуации сегодня все чаще называют глобализацией. Для современного мира характерны сложные, тесно переплетенные взаимосвязи различных регионов и различных отраслей, сверхсложная техническая оснащенность общества, массивные процессы общепланетарного значения (политические, экономические и др.), многоступенные каскады реакций, сопровождающих то или иное мировое событие.

Среди главных тенденций современной науки обычно называют следующие: интеграция; дифференциация; математизация; индустриализация; информатизация. В этом комплексе важных тенденций различимы как положительные, так и отрицательные стороны.

Под интеграцией понимают тенденцию объединения научного знания. Наука, как и другие социальные сферы, тоже «глобализируется». Стираются границы между прежде различными дисциплинами. Это проявляется в различных формах. Важнейшую роль играют процессы взаимодействия научных областей. Современная наука богата различными плодотворными междисциплинарными связями, которые объединяют направления, ранее развивавшиеся отдельно — математика и лингвистика, физика и химия, математика и экономика и т.п. Проявлением интеграции является также стремление к унификации понятийного аппарата науки. Периодически возникают и выдвигаются на роль объединяющего центра определенные интегративные науки, в которых производятся широкие и перспективные обобщения. Примерами таких наук и научных подходов могут служить кибернетика, общая теория систем, семиотика, теория информации, синергетика. Тяга к единству научного знания столь сильна, что появление таких интегрирующих направлений всегда вызывает оптимизм ученых и философов и сопровождается несколько завышенными ожиданиями.

Дифференциация науки — это противоположно направленная тенденция дробления научных областей. Ко второй половине XX в. возникла масса тонких подразделений внутри наук, например, в физике: физика плазмы, физика твердого тела, механика сплошных сред и т.д. Внутри наук нарастает специализация, ведущая к тому, что сложившиеся направления рассыпаются на массу узких областей с собственной усложненной терминологией и проблематикой, отделенных друг от друга профессионально-институциональными барьерами. Все это вызвано объективным требованием концентрации усилий ученых на «точечных» участках и, конечно, это в значительной мере повышает эффективность научного поиска. Но есть и отрицательные следствия: утрата стратегического видения науки, затруднение взаимопонимания ученых, нарастание потерь информации (феномены «пересечения» одних и тех же результатов в разных направлениях, невостребованность узких знаний высокоспециализированных научных областей). Сегодня многие аналитики высказывают свои опасения по поводу того, что дифференциация в ряде научных областей явно преобладает над интеграцией.

Математизация — это проникновение математических подходов и методов в другие области научного познания. Общеизвестна огромная роль точных методов, математического моделирования, вычислительных экспериментов. Помимо естественных наук, которые существенно связаны с математикой, математизация пришла и в гуманитарную науку — в историю, лингвистику, социологию и др.

Индустриализация. Связи науки с техникой приводят к взаимопроникновению этих областей: к «онаучиванию» технологии и «технологизации» науки. Сегодня наука опирается на мощную индустриальную базу. Для проведения экспериментов, наблюдений, расчетов и т.п. теперь зачастую требуются сложнейшее оборудование и коллективы обслуживающего персонала.

Информатика — группа дисциплин, занимающихся изучением и совершенствованием информационных процессов и обслуживающих их технических систем. Информатизация — это использование новейших информационных технологий во всех важнейших областях человеческой деятельности. Сегодня компьютер является необходимым инструментом в любых областях науки. Он включается во все стадии работы: в поиск базовой информации по теме, планирование эксперимента, управление процессом экспериментирования, теоретический анализ, представление результатов, научную коммуникацию и т.п. Революционные изменения происходят в связи с развитием сети Интернет. Интернет — это новая реальность, новое информационное пространство, радикально изменяющее образование, образование, здравоохранение, управление, бизнес, быт и другие сферы.

Сегодняшний характер роста научного знания таков, что следует, пожалуй, говорить не о динамичном, а о сверхдинамичном развитии множества научных областей. Текущие обзоры, отражающие оригинальные статьи за определенные временные интервалы, в таких областях почти сразу устаревают. Все это придает особенно сложный характер профессии современного ученого и выдвигает перед научным работником задачу быть всегда современным, востребованным, информированным, оперативно реагирующим, обновляющимся.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *